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Abstract

The popularity of rooftop solar for individual homes con-
tinues to rise rapidly. However, techniques for accurately
forecasting solar generation are critical to fully exploiting the
benefits of such locally-generated solar energy. In this paper,
we present SolarCast, a cloud-based web service, which au-
tomatically generates models that provide customized site-
specific predictions of future solar generation. SolarCast uti-
lizes a “black box” approach that requires only i) a site’s
geographic location and ii) a minimal amount of historical
generation data. Since we intend SolarCast for small rooftop
deployments, it does not require detailed site- and panel-
specific information, which owners may not know, but in-
stead automatically learns these parameters for each site.

We evaluate SolarCast’s accuracy on a dataset consisting
of 118 geographically-diverse solar deployments, and show
that it learns an accurate model using much less data (~1
month) than a prior SVM-based approach, which requires
~3 months of data. SolarCast also provides a programmatic
API, enabling developers to integrate its predictions directly
into energy-efficiency applications. We present a case study
of using SolarCast to implement one such application: a
“sunny” load scheduler, which schedules a dryer’s energy us-
age to maximally align with a home’s solar generation. Our
results indicate that a representative home is capable of re-
ducing its grid demand up to 40% by providing a modest
amount of flexibility (of ~5 hours) in the dryer’s start time.
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1 Introduction

Solar generation capacity is experiencing a dramatic in-
crease worldwide, having risen five-fold over the past five
years from ~2300 megawatts (MW) in 2010 to ~12000MW
in 2014 in the U.S alone [16]. Over 4750MW (or 49%)
of this new capacity has been installed in just the last year
alone, due, in part, to a rapid drop in solar panel prices,
which have fallen 60% since 2011 [[1]. Solar deployments
come in a wide variety of sizes, ranging from the massive
solar farms deployed by utilities (and some datacenter oper-
ators [2]) to small and medium-sized deployments by home-
owners, farmers, and local businesses. Overall, nearly half of
aggregate solar capacity now derives from small-scale home
deployments (<10kW), many of which rely on net metering
to transfer surplus energy to the grid [16], thereby eliminat-
ing the need for expensive battery-based energy storage. As
the number of home deployments grows, the need for predic-
tive tools that provide near-term forecasts of solar generation
at the time-scales of hours to days are becoming increasingly
important. Solar energy forecasts have a wide range of ap-
plications. For example, smart buildings could employ fore-
casts for opportunistic scheduling of elastic loads, while util-
ities could use them to estimate aggregate demand across a
customer base with a high penetration of solar energy.

In this paper, we argue that predicting solar generation
for small-to-medium-sized solar deployments raises a dif-
ferent set of challenges than predicting it for massive solar
farms. Specifically, the location of massive solar deploy-
ments is carefully chosen to be in open spaces that mini-
mize occlusions, which enables installers to maximize solar
output by precisely tuning the orientation of the panels or
employing “trackers” that continuously change the tilt of the
panels to track the sun. Further, industrial solar farm opera-
tors routinely clean the panels to keep them free from dust or
snow in order to maintain optimal solar output. At the same
time, industrial operators also have the technical expertise
and resources to carefully design and tune custom models to
predict future solar output.

Unfortunately, the characteristics above do not hold for
most small-to-medium-scale solar deployments. For in-
stance, the orientation and pitch of a home’s roof constrains
the installation of rooftop solar panels and limits the abil-
ity to optimize their placement. As a result, shadows from
nearby objects, such as trees or even neighboring build-
ings, are common; these shadows complicate solar genera-



tion forecasting, as they change based on the time of the day
and season of the year. Roofs are often not easily accessi-
ble, which also limits the ability to clean the panels. Finally,
neither the owners nor the installers of small solar deploy-
ments typically have the technical expertise or the resources
to develop custom prediction models that are specific to their
setup. The large number of small-to-medium-scale deploy-
ments makes it challenging for technical experts to manu-
ally develop custom models for each site, as is common with
industrial-scale solar farms. In fact, due to the factors above,
since the models for small rooftop solar deployments are ac-
tually more complex and dynamic than for large solar farms,
they require even more time and expertise to develop.

Despite the challenges above, accurate near-term predic-
tions, if available, have the potential to yield numerous ben-
efits. Effective planning is key to maximizing the environ-
mental benefits of solar energy and enabling it to scale to a
significant fraction of homes. For instance, homes that plan
to better align their energy usage with solar generation de-
crease the surplus energy they net meter to the grid. Mini-
mizing the energy contributed by net metering is important
for two reasons. First, consuming power at the point of pro-
duction is inherently more energy-efficient than net meter-
ing, since it eliminates transmission losses. Second, the in-
creasing stochasticity in demand from net metered home so-
lar installations complicates utilities’ task of balancing sup-
ply and demand in real time, since utilities cannot accurately
account for home solar generation when planning generator
dispatch schedules, i.e., when to activate and deactivate gen-
erators to ensure the supply of power matches the grid’s net
demand. As a result, most states place strict limits on both
i) the amount of power individual consumers may net me-
ter and ii) the total fraction of generation contributed by net
metering [4]. In addition, there is also a concern that net
metering may actually increase the electricity costs of con-
sumers without solar installations [18]], since the increased
generation costs from satisfying a more stochastic demand
are distributed across all consumers [12].

Since solar energy today only contributes a small fraction
of grid energy (~1% [16]), the lack of effective planning
does not currently pose a significant problem. However, as
solar penetration rises, effective planning by homes and util-
ities will be increasingly important to maintain grid stability.
To facilitate better planning at large scales, we present So-
larCast, an open cloud service that accurately forecasts near-
term energy generation for the increasing number of small-
scale home solar deployments. Unlike prior work on solar
forecasting, which often relies on detailed site-specific infor-
mation to develop forecast models, SolarCast automatically
generates prediction models using a “black box” approach
that only requires i) a site’s location and ii) a minimal amount
of historical generation data. Our black box approach fol-
lows from SolarCast’s design as cloud-based service: since
most homeowners do not know the arcane details of their
solar installation required by many models, such as the effi-
ciency and type of their panels or their orientation, we learn
these parameters when possible, and dynamically adjust pre-
dictions to account for their impact, when not.

Since the numerous new solar installations that are rapidly

coming online have little historical data, SolarCast focuses
on reducing the amount of historical data necessary for ac-
curate modeling, which has not been explicitly addressed in
prior work. Instead, prior work often assumes historical gen-
eration data is available for each time of the year, which im-
plicitly requires multiple years of data since the maximum
solar generation capacity varies at each time of the day on
each day of the year. In addition, SolarCast is a live service
that continuously updates both its i) model based on fresh
data and ii) predictions based on new forecasts. In designing
SolarCast, we make the following contributions.

Automatic Model Generation. We develop a system for
automatically generating accurate prediction models cus-
tomized for each solar deployment, while also minimizing
the amount of both information about the deployment and
historical generation data necessary to generate such mod-
els. Our system uses continuous learning to refine the model
as new data becomes available.

Black Box Prediction Model. We employ “black box” mod-
els for each solar site that learns important static and dy-
namic parameters of the installation. Static parameters in-
clude the panels’ orientation, while dynamic parameters in-
clude dust and pollen, snow cover, and shade from leaves
or buildings. Our model employs grid search to learn the
static site-specific parameters of a deployment, e.g., tilt and
azimuth, while adjusting for errors online due to dynamic
parameters. To minimize the need for historical generation
data, we normalize each point in time relative to the ideal
cloudless irradiance based on the location and angle of the
sun. Our key insight is that the same weather parameters af-
fect ideal cloudless irradiance by the same proportion at any
time, i.e., the same weather will reduce the ideal irradiance
by 50% at both Spm and 12pm. This normalization enables
SolarCast to learn a single model, rather than multiple mod-
els for different periods of time.

Scalable Cloud Service. We design SolarCast as an open
cloud service that provides customized predictions for each
solar site based on models learned from both historical data
and continuously refined using live data. In addition, the ser-
vice also offers a web-based API to enable application devel-
opers to incorporate SolarCast predictions into their energy
management applications.

Implementation and Evaluation. We evaluate SolarCast’s
prediction model on a geographically distributed dataset of
118 solar installations with associated location information.
Our results show that SolarCast’s model learns a more ac-
curate model significantly faster (using less training data)
than an approach based strictly on Support Vector Machines
(SVMs), which requires a different model for each time pe-
riod. In addition, we present a case study of using SolarCast
to implement one such application: a “sunny” load sched-
uler, which schedules a dryer’s energy usage to maximally
align with a home’s solar generation. Our results indicate
that a representative home is capable of reducing its grid en-
ergy demand up to 40% by providing a modest amount of
flexibility (of ~5 hours) to defer the dryer’s start time.



2 Background and Motivation

Our work focuses primarily on rooftop solar deployments
for smart homes and buildings, although we note that our
techniques are applicable to other small-to-medium-scale so-
lar deployments, e.g., such as ground-based solar arrays. We
assume that the smart home or building uses its locally gen-
erated solar energy whenever possible and net meters any
excess solar energy to the grid. The goal of our work is
to build a system that provides short-term forecasts of solar
generation for the next few hours or days that are customized
to each site; other applications may use these predictions to
optimize a building’s energy usage. To provide customized
forecasts, our system automatically learns a custom predic-
tion model for each solar installation that accounts for many
of the factors that influence solar generation. The primary
factor that governs solar output is the solar irradiance, or the
amount of sunlight visible by the panels. As is well known,
solar generation is intermittent since solar irradiance itself
depends on many factors, including the weather, e.g., a sunny
versus cloudy day.

Solar generation also depends on other factors, as shown
in Table 1, including: 1) panel characteristics, such as the
size, type, age and number, ii) site characteristics, such as
panel placement, tilt and orientation, as well as the geo-
graphic location of the installation, iii) surrounding charac-
teristics, such as nearby trees, neighboring buildings or other
structures that may cast shadows on panels; the amount of
shadows will themselves vary by the time of the day, as well
as by the seasons and foliage, iv) seasonal characteristics,
such as the season of the year, which determines the length
of the day and the solar intensity, v) weather characteris-
tics which encompasses a variety of weather parameters in-
cluding cloud cover and temperature, and vi) other dynamic
characteristics such as dust or snow on the panels, which
vary over time. While we discuss these factors in more de-
tail below, we note that many of them are highly specific to
a particular installation. Thus, precisely quantifying them is
not practical, or even possible, for owners of solar deploy-
ments having limited technical background.

Thus, for our system, we assume knowledge of only the
GPS coordination of the installation, specified in the form
of a street address, and a minimal amount of training data,
which records recent history of solar generation at a site. We
note that, unlike some prior efforts that require substantial
amount of training data to learn a model, our goal is to min-
imize the amount of training data needed to learn an initial
model. We impose this requirement since an explicit goal
of our system is to provide predictions even to new rooftop
solar installations that may have only a small amount of his-
torical data. Since new solar installations are coming online
rapidly, many do not have significant historical data. Since
many solar installations provide live generation data through
web-based interfaces, we assume that our system may also
use live data, when available, to continually refine its models
and adjust its predictions.

A final design goal is automation and scale. Since there
are a large number of small solar deployments, the model
generation process must be automated to scale to many de-
ployments and provide continuous predictions. Since each

site has unique characteristics, each generated model will be
different, which requires our system to learn a unique model
for each site. Lastly, we note that the generated models are
themselves likely to be more complex than those for large
solar farms which have “better optimized” installations that
may permit static models. In contrast, a static model may not
suffice for rooftop installations when accounting for the im-
pact of dynamic parameters, such as shade, foliage, dust, and
snow. Below we detail how weather conditions and config-
uration parameters affect solar power output, as well as our
motivation for considering a black box approach for predict-
ing solar generation.

2.1 Impact of Weather Conditions

The power a solar panel generates derives from the
amount of light, i.e., solar radiation, incident on its surface.
The radiation from the sun passes through the earth’s atmo-
sphere, resulting in some loss of energy due to scattering by
atmospheric components in the sky, such as cloud cover, va-
por, dust, and pollen. The incident radiation, called insola-
tion, has a direct bearing on the amount of solar power gen-
erated. Several other weather parameters, such as humidity,
dew point, temperature, and precipitation, also affect insola-
tion. In prior work, Sharma et al.[23]] discuss how different
weather parameters affect solar generation and quantify their
correlation with solar irradiance. In addition, weather con-
ditions also affect the panel properties. As with any semi-
conductor device, solar cells are sensitive to temperature. As
the temperature increases, the voltage across each cell re-
duces. The cell temperature tends to be higher than the am-
bient temperature by around 20°C. Also, every 1°C rise in
the cell temperature above 25°C reduces the efficiency by
0.5% [24]. Further, humidity causes ingression to the solar
cell enclosure. Mekhilef et al. [17] detail the impact of hu-
midity, air velocity, and dust on the panel’s efficiency.

2.2 Impact of Configuration Parameters

Apart from atmospheric conditions, installation parame-
ters, such as tilt and orientation of the panels, also affect the
power generation. If the tilt and orientation of a panel is
known, a simple trigonometric formulae exists, as discussed
in the next section, to derive insolation incident on the panel
for the given tilt, orientation, and location of the installation.
Unfortunately, while large solar farms may know the precise
tilt and orientation of their panels, owners of rooftop instal-
lations may not know the precise value of the tilt and orien-
tation. In addition, rooftop tilt and orientation is rarely ideal,
and is often dictated by site-specific issues, such as avoiding
nearby tree shadows and optimizing roof space. As a result,
these parameters tend to vary widely for different sites.

Further, other site specific factors, such as the inverter
efficiency, battery capacity and condition, and grid connec-
tivity, also affect the power generated from a solar panel.
Technical manuals for photovoltaic (PV) systems [L1] dis-
cuss these issues in detail. As with tilt and orientation, a
typical homeowner is also not likely to know these more de-
tailed parameters for a typical rooftop installation.

2.3 Our Black Box Approach

Prior work [23]] has focused on using machine learning
techniques to automatically learn the impact of weather con-



H Parameters [

Variability “ Our Mechanism [ ]

Panel Parameters Static ML Regression

Tilt Static Grid Search

Orientation Static Grid Search

NOCT Static Grid Search

Tree Shade Dynamic Adaptive Learning

Snow/Dust/Pollen Dynamic Adaptive Learning
Table 1. SolarCast employs different techniques to cap-

ture variations in panel and configuration parameters.

ditions, while assuming that panel properties and configura-
tion parameters are known in advance. However, for resi-
dential rooftop installations, it is often difficult to obtain the
panel properties and installation-specific configuration pa-
rameters because homeowners generally do not know these
technical details. Further, it is even more challenging to
know dynamic factors, such as shade, foliage, and pollen,
which vary either seasonally or irregularly. Consequently,
designing prediction models for residential rooftop installa-
tions requires a new approach that should automatically learn
panel properties and configuration parameters with limited
historical power data. Additionally, these models should au-
tomatically adapt to the dynamic parameters.

To generate solar power prediction models at scale, for
any solar installation in the country, we design a black box
model that only requires a site’s location and minimal his-
torical generation data to generate a customized prediction
model, tailored to that particular site. Our black box model
automatically learns static parameters, such as tilt and ori-
entation, using a grid search technique, and then uses a ma-
chine learning technique to predict power from weather fore-
casts. In addition, our black box model also employs an
adaptive learning algorithm to continue refining the model
as and when new data becomes available.

3 Automated Black-box Model Generation
While there has been significant work in predicting solar
generation, our approach differs from prior work in three sig-
nificant aspects. First, SolarCast automates the model gen-
eration process—it requires minimal initial inputs from the
user and requires no manual intervention by the user to gen-
erate a model. Second, SolarCast uses a black-box modeling
approach to learn the value of unspecified parameters. Third,
SolarCast continuously retrains and refines the model using
live data, while also using live data to adjust for the impact
of dynamic site-specific factors that are impossible to learn.
Similar to prior work on machine learning-based solar
predictions, SolarCast employs machine learning techniques
to derive its model. However, the primary difference from
prior work is that SolarCast automates the process of learn-
ing the model itself, which we refer to as automated model
generation. Such an automated model generation approach
is key to scaling SolarCast to large numbers of small-sized
deployments. At the heart of SolarCast’s automated model
generation is a black-box modeling approach, which repre-
sents another departure from prior work that typically uses
white box techniques. To better understand the differences
between the two, consider the following canonical white
box modeling approach based on machine learning. In this
case, the solar deployment is a “white box,” which means
that all important parameters of the deployment, such as its

panel type, tilt, orientation, efficiency, etc., are assumed to
be known. Further, a history of past generation data at dif-
ferent times of the day and seasons of the year is given, along
with the observed weather conditions at those times. The ma-
chine learning approach then simply learns the correlations
between the specified inputs and the observed solar output.

The learnt model is a “function” that, given certain inputs,
such as weather and time of day, will compute the expected
solar output under those conditions—based on the model’s
correlations. Much of the prior work, including some of our
own [23], take such an approach. In contrast, in a black box
approach, the solar deployment is assumed be a “black box”
where site specific parameters, such as the number and type
of panels, tilt, orientation, shadows, etc., are all unknown.
Instead, a past history of weather data and the observed so-
lar generation (inputs and outputs of the black box) are given
and all unknown parameters must be learned. Intuitively, this
is done by searching for the combination of these unknown
parameters that best explains observed outputs. Some dy-
namic parameters that are challenging to learn are accounted
for by adjusting the predictions dynamically. In this man-
ner, a black box method is more complex than white box
methods, but also requires fewer inputs and less training data
(since the models are continually refined as more live data
becomes available).

We first use a machine learning regression technique to
design a forecast — power model that predicts solar power
from weather forecasts for a sun-tracking solar installation
that always keeps its panels facing the Sun. Next, we ex-
tend the model to automatically learn the configuration (and
static) parameters, such as tilt, orientation, and Nominal Op-
erating Cell Temperature (NOCT), for any solar installation.
We then further extend the model to create an adaptive ver-
sion that not only automatically learns the configuration pa-
rameters, but also accounts for the dynamic environmental
factors, such as snow, dust, and pollen.

In this paper, we use the Mean Absolute Percentage Error
(MAPE) as a statistical metric to measure the model’s ac-
curacy. Though the Root Mean Squared Error (RMSE) is a
well-known statistical metric, we prefer the MAPE because
it is capacity agnostic, which allows us to directly compare
accuracy across panels with different capacities. Such com-
parisons are not possible with RMSE. Further., since weather
forecasts are occasionally erroneous, the MAPE is less sensi-
tive than the RMSE to occasional large errors. Thus, MAPE
is a better metric to illustrate the forecast prediction error.
The MAPE for n samples is expressed as:

Atfpt
A

100 &
MAPE = — -
n

)
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Here, A; and P; are the actual and the predicted value at time
t. However, problems can occur when calculating the MAPE
value with a series of small denominators. To circumvent
’divide by zero’ problem, we change the denominator in the
original formula from A; to A', which is the average value
over time ¢. Further, MAPE values calculated this way are
insensitive to inclusion of nighttime actual and predicted val-
ues as both would be zero. Thus, we use the below formula



to report prediction errors in this paper.

n
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3.1 Machine Learning Prediction Model

Much of the prior work has focused on predicting solar
irradiance from weather forecasts, and then using the irra-
diance — power formula to predict the solar power. Since
designing both the forecasts — irradiance model and irradi-
ance — power model require historical observed irradiance,
this approach is not scalable to millions of rooftop installa-
tions because the historical irradiance data is generally not
available from these sites. So, instead, we focus on design-
ing a prediction model that directly predicts solar power from
weather forecasts for any solar installation in the country. We
first assume the optimal configuration for the solar panel, i.e.,
the panel is always facing the Sun and is normal to the solar
radiation. Later, we use a grid search technique to automati-
cally determine the configuration parameters with a minimal
amount of historical generation data.

As described in [23]], weather metrics exhibit complex re-
lationships with solar intensity, which can be captured by ad-
vanced techniques, such as high-dimensional machine learn-
ing regressions. Feature selection and feature engineering
play an important role in machine learning. Similar to [23],
we consider all weather parameters, including sky cover,
temperature, humidity, dew point, precipitation potential,
and wind speed, as input parameters, but unlike prior work,
we create a new feature set by multiplying all weather pa-
rameters by the cloudless irradiance. Our intuition is that the
same weather parameter always affects the solar irradiance
in the same proportion, regardless of the time. For example,
if at 6pm a certain weather parameter causes cloudless irra-
diance to be cut in half, then if the weather parameter is the
same at 12pm, it will also cause the cloudless irradiance to
be cut in half (even though cloudless irradiance at 12pm is
different than at 6pm). Additionally, since the cloudless ir-
radiance depends on the altitude and azimuth of the Sun, by
multiplying the cloudless irradiance by the weather parame-
ters our model also captures seasonal and diurnal variations
in the Sun’s position. Consequently, we formulate the power
prediction regression model as:

@

n
IJZ‘ — f(Stcloudless . Z Vth) (3)

i=1
Here, P; and S¢/°4dless are predicted power and cloudless ir-
radiance, respectively, at time ¢, Wti is forecast of the i
weather parameter at time ¢, and f is the function that we
determine using machine learning regression. This novel
feature engineering enables prediction of solar power at any
time of the day without learning a separate model for differ-
ent hours, a drawback of the proposed model by Sharma et
al[23]. We apply a linear least squares regression technique
on a training dataset to determine the function f. Linear least
squares regression is a simple and commonly-used technique
to estimate a value to be predicted from a set of variables,
e.g., solar power, and a set of independent variables or pre-
dictors. The regression minimizes the sum of the squared
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differences between the observed solar power and the power
predicted by a linear approximation of forecast parameters.

3.2 Black-box Learning of Static Parameters

The above model assumes the optimal configuration of
solar panels, and might work well for a sun-tracking solar
installation. However, a typical rooftop installation does not
have the optimal configuration, since its configuration is dic-
tated by the tilt and orientation of the roof. Further, panel
properties and configuration parameters vary widely across
different sites, and are often unknown to homeowners. Thus,
to automatically learn these static parameters and generate
site-specific prediction models we modify the above regres-
sion model as follows:

n
P, _ f/ <S;'m)dule V- Z‘/th) (4)

i=1

Here, P, is the predicted power, "% is the perpendicu-
lar component of the cloudless irradiance on the panel, v; is
the reduction factor due to the cell temperature, and W,i is
forecast of the i'" weather parameter, all at time 7. We learn
the function f’, for given values of static parameters, using
the machine learning regression technique from the previous
section. Since the perpendicular component of the cloud-
less irradiance depends on the panel’s tilt and orientation,
the Sun’s altitude and azimuth, S,”wd”le, is expressed as:

(cosay sinPcos(y — 6;) + sinoy cosB)

&)
Here, o, and 6, are the altitude and azimuth of the Sun at
time 7, respectively, whereas B and  are the tilt and orien-
tation of the panel, respectively (Figure [T). For simplicity,
we assume the panel’s orientation to be same as the Sun’s
azimuth in the figure. In addition to tilt and orientation, cell
temperature has a direct bearing on the power output from a
photovoltaic panel. NOCT is defined as the cell temperature
reached by open circuited cells in a module under ideal con-
ditions (20°C, 800 Wm—2), such that for every degree rise in
the cell temperature above 25°C, there is a 0.5% reduction
in the power output [25]]. The cell temperature can be calcu-
lated from the ambient temperature for a given NOCT value
as follows:

module __ ccloudless
Sz - St ’

. NOCT —20

thell = szr + ————— " Smodule (6)
80

Here, 7, and T,%" are the cell and ambient temperature at

time ¢. All units of temperature are in celsius. The unit for

Smodute is mWem™2. Hence, v, in Equationis given by:
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Figure 2. Prediction error for various values of tilt and
orientation, and for a fixed NOCT value.
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Figure 3. Grid search improves the prediction accuracy
by more than 10% over a period of 7 days.

To automatically find the static parameters — tilt, orienta-
tion, and NOCT - for any solar panel installation, we em-
ploy a grid search technique. The grid search algorithm is
a popular hyperparameter optimization technique. Here, we
perform an exhaustive search in a three-dimensional hyper-
parameter search space guided by cross-validated MAPE on
the training data. Figure 2] shows the MAPE for various val-
ues of tilt and orientation during the grid search for a fixed
NOCT value of 48.

To realize the benefits of grid search we use the histori-
cal power data from a 10kW solar installation near Ambherst,
MA, and historical weather forecasts from the Forecast.io
web service (http://forecast.io) for the same location. We
use the first six months of data from July to December 2013
for training and the remaining six months from January to
June 2014 for testing. We first discard erroneous values, and
use linear interpolation to find missing values. We then gen-
erate the prediction model for the user-supplied tilt and ori-
entation, and use the grid search algorithm to find the actual
tilt and orientation. Figure [3]compares observed power, pre-
dicted power for the user-supplied tilt and orientation, and
predicted power for the self-learned (using grid search) tilt
and orientation for 7 days starting June 8, 2014. Figure[3]and
Figure [] (discussed later) are for visualizing the improve-
ment in prediction; we provide comparisons over a longer
timespan of 6 months in the evaluation section. As the figure
indicates, the grid search automatically learns the static pa-
rameters, and thus provides better predictions than the model
based on the user-supplied parameters, which are generally
given by visual inspection and are often inaccurate.
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Figure 4. Using past information improves the prediction
accuracy by more than 8% over a period of 7 days.

In summary, SolarCast automatically learns static config-
uration parameters such as tilt, orientation, NOCT, and gen-
erates a custom site-specific prediction model for any solar
installation ranging from a single panel rooftop installation
to a large solar farm; it only requires the location and histor-
ical power data form the site.

3.3 Adapting to Dynamic Factors

Apart from the static configuration parameters, dynamic
environmental factors, such as tree shade, foliage, pollen,
snow, and dust, also affect the power output. A few of these
parameters, such as foliage and pollen, have seasonal varia-
tions, while others, such as leaves and dust, vary irregularly.
Since, unlike large solar farms, rooftop installations are not
cleaned regularly, we must account for the dynamic factors
in our prediction model. Our intuition is that power output
in the recent past contains some information about the dy-
namic factors. To compensate for prediction errors due to
the dynamic factors we add a new feature P55, which is
essentially the power output at the same time the previous
day, in the feature set. So, the predicted power at time ¢ can
be expressed as:

n
Pt _ f/ (Slmodule V- Z vvtz +E{)_1412]Z‘u1) (8)
i=1

Here, P, is the predicted power, S/°%¢ is the perpendicu-
lar component of the cloudless irradiance on the panel, v,
is the reduction factor due to the cell temperature, and W}/
is forecast of the i weather parameter, all at time ¢. Since
Ploi”z'i"t is a dynamic parameter that changes every day, we
retrain the model (and get a new function f’) every day for
the next day prediction. Note that running the grid search
algorithm is not required every day because the grid search
technique is used to learn the static parameters, which do not
normally change for a particular installation. So, once we
learn the static parameters of a site, using techniques from
the previous section, we always use those values in its dy-
namic predictor (Equation [g).

To see how our prediction model leverages past informa-
tion to account for errors due to dynamic factors we use
the same dataset as above for training and testing. For a
fair comparison with the static grid search model discussed
above, we consider the a moving six months training period
for the adaptive model. In other words, we retrain the adap-
tive model daily with the past six months of data. Further, we
use the static parameters learned from above for the adaptive
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Figure 5. Prediction error for the online version of Solar-
Cast’s adaptive model and SVM-ML model.

model. As Figure [] indicates, using past information im-
proves the prediction accuracy. The MAPE value reduces
from 35.6% (for grid search based static model) to 32.51%
(for adaptive model) for the same duration.

In summary, SolarCast’s dynamic model can learn dy-
namic environmental factors, such as dust, pollen, snow, etc.,
that vary seasonally or irregularly, and automatically corrects
the model to account for effects due to the dynamic factors.

3.4 Online Learning

Like any regression model, SolarCast also requires histor-
ical data (of several months) for training, which increases the
barrier to using its services. Gathering sufficient historical
data is especially challenging for new installations or exist-
ing installations that have not been recording power gener-
ation since deployment. Further, not all homeowners install
sophisticated monitoring devices, which can store data for
several months or years. In such cases, SolarCast should be
able to generate prediction models, albeit poor in the begin-
ning, with as little as one or two days of historical data, and
should keep retraining (and refining) the models as and when
it gets new data from the sites.

To address issues with insufficient historical data, Solar-
Cast employs an online algorithm that starts generating site-
specific prediction models from as little as one to two days
of historical data. Further, SolarCast stores the past data for
each site and retrains (and refines) the model as it gets more
recent data from the site. To see how soon our online ap-
proach achieves prediction accuracy of the static or adaptive
model generated with sufficiently large training data, we start
the online model with just one day of training data. As shown
in Figure[5] the online model rapidly converges, within 10%,
to the static model within one month. This illustrates that
any new or old installation in the country can start using So-
larCast service with just a few weeks of historical data. Fur-
ther, we compare our online approach with the online version
of the machine learning prediction model from [23] using a
Support Vector Machine (SVM) with a linear kernel, here-
inafter referred as the SVM-ML model. The figure shows
that our adaptive model requires much less training data than
the SVM-ML model to create site-specific prediction mod-
els. As SVM-ML learns a separate model for each time of
the day, essentially leveraging only (1/24)"" of the training
data, the improvement in MAPE is more sluggish. Also, no-
tice MAPE for both approaches stabilizes with more data.

In summary, SolarCast’s online learning technique can
generate site-specific prediction models with as little as a few
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Figure 6. SolarCast Web Service Architecture

weeks of historical data, and keeps on refining the models as
and when it gets new data from the sites.

4 SolarCast Cloud Service

In this section, we first describe the high-level architec-
ture of SolarCast, followed by our prototype implementation.

4.1 Architecture

SolarCast provides a web-based service (see
http://solarcast.cs.umass.edu) that households can use
to predict solar power generation from their own instal-
lations for short-to-medium time scales ranging from an
hour to a few days. Unlike prior services [19]], which
are either proprietary or require knowing installation- and
panel-specific parameters, SolarCast does not require any
panel or configuration parameters from the user. Instead, its
black-box service automatically learns these parameters, as
discussed in the previous section.

SolarCast consists of five primary components — (a) Pro-
file Manager, (b) Visualization Engine, (c) Predictive Model
Generator, (d) Power Predictor, (e) Storage Engine. First and
foremost, a user needs to create an account with SolarCast,
and then create an installation profile. The installation profile
contains the site location and any other optional information
provided by the user. The installation profile is the key infor-
mation for all other components; they operate on per-profile
basis. A user can have multiple installation profiles, and a
profile may be associated with multiple users.

The profile manager is responsible for managing users
and associated profile information. When a user logs in,
the profile manager gets the associated profile(s) and other
information from the storage engine and calls the visualiza-
tion engine to display the required information on the user’s
browser. The visualization engine interacts with the pro-
file manager and power predictor to get necessary informa-
tion, such as point forecast, average forecast, and predicted
power generation, to render display for the user’s browser.
Its graphical and intuitive display enables the user to easily
grasp the historical as well predicted power generation for
any time interval in the future or past.

The storage engine is responsible for formatting and stor-
ing raw historical, as well as forecast, data into a relational
database. Further, it also stores customized site-specific fore-
cast models in the database. All other components contact
the storage engine for retrieving information, such as histor-



ical/forecast data and forecast models. When a user uploads
historical power data it also pulls corresponding forecast data
from Forecast.io to store in the database.

The adaptive model generator and power predictor are the
core components of SolarCast. Whenever a user uploads
historical power data for an installation profile the profile
manager first calls the storage engine to store the data and
then triggers the adaptive model generator. The model gen-
erator gets the stored data for that profile from the storage
engine, and runs the ML-based adaptive algorithm to gen-
erate a custom prediction model for that installation profile.
Moreover, the model generator automatically refines the pre-
diction model if the user uploads any new information.

The power predictor is called when a user sends a request
to generate prediction report for a selected time interval. The
power predictor gets the forecasting model from the storage
engine, pulls real-time forecast data from Forecast.io, and
predicts power generation for the selected interval. It calls
the visualization engine to format the results and display that
to the user. It provides point-by-point predictions as well as
average prediction of the weather condition and power out-
put from the installation.

4.2 Implementation

We use many open source libraries to build SolarCast
and its black box prediction model. We use Django [6], an
open source web application framework written in Python, to
build the SolarCast’s web service. The visualization engine
uses dygraph [7]], a Javascript charting library specifically
designed to display time series data, to display solar power
predictions to users. We use scikit-learn to design our black
box prediction model. scikit-learn is an open source machine
learning library for Python. In addition, we use libraries —
SciPy, NumPy, Pandas — from the SciPy stack [22] for data
processing. To store users’ profiles, prediction models, and
dataset we use SQLite, a lightweight disk-based relational
database management system.

Since sensors used by many households report power
readings in their local time zone, accounting for the day-
light saving becomes difficult in the prediction model. For
this purpose, we convert local time readings to standard unix
time using the Python pytz library [21] that automatically
handles the daylight saving issues. To get weather forecasts
for any location we use the Forecast API from Forecast.io[8]].
Forecast.io provides simple RESTful APIs to retrieve both
historical as well as future forecasts of several weather pa-
rameters, such as cloud cover, temperature, humidity, pre-
cipitation potential, dew point, wind, etc. It returns data in
the JSON format. Furthermore, we use the National Renew-
able Energy Laboratory recommended Masters’ Algorithm
to get the Sun’s altitude and azimuth, and the cloudless irra-
diance at a particular time for a given location. We use the
PySolar library [20] that implements the Masters’ algorithm.

S Evaluation

We evaluate our black box prediction model on a large
dataset of 118 solar installations spread across 16 different
states in the US. The dataset consists of 116 small rooftop
installations (four installations of 50-150kW capacity, three
of 20-50kW capacity, and the rest of 5-20kW capacity each)
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Figure 7. Tilt and orientation found using the grid search
for each solar installation.
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and 2 medium-sized solar farms of around 1MW capacity
each. Each dataset contains the location — latitude and lon-
gitude — and historical power readings collected for twelve
months using energy meters whose accuracy is discussed
here [3]. We use first six months of data for training and
last six months for testing.

We first learn the configuration parameters — tilt, orienta-
tion, and NOCT - for each site using the grid search algo-
rithm. Next, we use the site-specific configuration parame-
ters in our black box models (both static as well as adaptive)
for each site. For each site, the static model, once generated
over the training dataset, does not change over the testing
period (of six months), where the adaptive approach recre-
ates or refines the model every day, over past six months of
historical data, to predict the next day power generation. To
compare with an existing machine learning based forecast-
ing technique, we use the SVM-ML model discussed earlier
which uses a support vector machines (SVM) with linear ker-
nel [23]. As opposed to predicting irradiance, we directly
predict power based on weather forecasts for each day.

5.1 Learning Configuration Parameters

First, we use the grid search algorithm to learn configu-
ration parameters — tilt, orientation, and NOCT - for each
site. We vary the tilt between 0° and 50° in step of 5°, the
orientation between 150° and 210° in step of 10°, the NOCT
between 20°C and 60°C in step of 5°, and find the values
that minimize the average MAPE over the training dataset.
We randomly assign a number between 0 and 118 to each
site. Figure [7|shows the tilt and orientation for each site (X-
axis represents the site number). As the figure shows, the
tilt and orientation vary greatly across different sites, which
highlights the importance of an automatic technique like our
black box model to learn the configuration parameters rather
than assuming fixed values for all sites.

5.2 Model Comparison

In this section, we compare the prediction accuracy
of three models — our black box static model, our black
box adaptive model, and the SVM-based prediction model
from [23]] — for each site. We use MAPE to measure the pre-
diction accuracy for each model. Figure [§(a) plots MAPE
for all three models for 116 rooftop installations, while Fig-
ure [8b) plots the same for two open-space medium sized
installation, each with IMW capacity. Both figures show
that the dynamic approach adapts to the dynamic parameters,
such as dust, leaves, or pollen, and performs slightly better



(~3-5%) than the static model that only learns the static con-
figuration parameters and is oblivious to the dynamic factors.
For both graphs, the SVM-ML model performs worse be-
cause it lacks important features, such as the cloudless irra-
diance, which accounts for the sun’s elevation and azimuth,
and it does not find the actual values of configuration param-
eters, which we find using the grid search algorithm.

5.3 Case Study: SolarCast in Smart Homes

In this section, we explore how households can leverage
our black box prediction model to schedule elastic loads and
reduce electricity bills. To maximize green energy pene-
tration homeowners can schedule certain elastic loads, such
as plug-in electric vehicles, washing machines and dryers,
to run when solar energy is abundant. To experiment with
sunny scheduling of the dryer in a smart home we choose a
house located in the state of Massachusetts. The power us-
age varies from 0 to 18.88 kW with an average of 1.38 kW.
The solar power generation varies from 0 to 9.71 kW with
and average of 1.43 kW. Thus, the house is a net genera-
tor of electricity. We have per-hour data with average power
for the solar generation, total electricity usage (excluding the
dryer) and an additional load of a dryer. The dryer is running
for 652 hourly intervals out of the overall 8258 hours (49
weeks). Note that a single load can run for multiple hourly
timeslots. Figure [9(a) shows the frequency distribution for
the hour of the day when the dryer runs. The figure demon-
strates that the dryer is typically operational in the afternoon.

For this case-study, we make an assumptions that the
magnitude of all loads, including that of the dryer, is known
beforehand. We employ an online scheduling algorithm that
allocates loads to the earliest contiguous timeslots where
minimum load from the grid is drawn based on solar pre-
dictions that have been learnt online using day ahead fore-
casts. In this algorithm, we bring flexibility in scheduling
by running the load in a timeslot of +k hours to the actual
time. While allocating dryer loads, we ensure that multiple
loads are not scheduled during the same timeslot. Excess
power for timeslot j, is obtained by subtracting the electric-
ity drawn from the grid to the predicted solar power.

The overall energy consumed by the dryer is 863.54 kWh.
With the existing schedule, the total power drawn from the
grid is 508.63 kWh. In Figure [9[b), we show the results
of running the algorithm with observed and predicted so-
lar power generation values with varying flexibility. Even
though most of the dryer loads are scheduled during after-
noons when solar intensity is strong, there is a substantial
reduction in electricity drawn from the grid by having a flex-
ibility of few hours.

Result: Smart homes can leverage SolarCast’s prediction
techniques to schedule elastic loads and reduce their elec-
tricity bills. As one example, a smart home reduces its grid
energy demand by 40% by providing a little flexibility (of ~5
hours) to startup time of a dryer.

6 Related Work

Prior work on solar forecasting focus on predicting solar
power for a particular solar panel installation or a few in-
stallations only. They either predict solar irradiance and get
power from the irradiance or directly predict the power. In

both cases, they assume all panel and configuration param-
eters are known in advance, which are often unknown for a
typical rooftop installation. Lorenz et al. [[14] and Huang et
al. [10] provide a comprehensive comparison of different so-
lar irradiance and power prediction techniques, respectively.
These techniques can be classified as persistence method,
satellite data/imagery method, numeric weather prediction
(NWP) method, statistical method and hybrid method. Each
of these methods is suitable for different time horizons. For
example, the persistence model is ideal for short-term fore-
casting (1 hour ahead), whereas statistical methods are more
effective for medium-term forecasting (1 to 36 hours ahead).
Yona et al. [26] use a neural network model to forecast solar
irradiance; they then use a site-specific irradiance — power
model to forecast power generation.

Tao et al. [25] propose a nonlinear autoregressive exoge-
nous model that uses installation parameters, such as tilt and
orientation, to forecast day-ahead power generation. The in-
put layer of the model includes cloudless irradiance for the
next day from 6:00 AM to 6:00 PM. To predict power at any
arbitrary time it further requires additional input nodes with
adequate training. These restrictions exist for [3]] that uses
Elman Neural Networks with the input layer very similar to
that of [25]]. Mandal et al.[15] presents a hybrid model that
uses wavelets and Neural Networks. Moreover, all of these
techniques have used a single site and limited dataset (~4
days) for evaluation. Apart from neural network models, ma-
chine learning (ML) based statistical techniques [23| (9} [13]]
are also gaining popularity in the past decade. These tech-
niques typically use weather forecasts and historical data, to
predict power generation at short time scales.

7 Conclusion

In this paper, we present a black box approach for fore-
casting solar power generation. Our black box model only
needs the location and minimal historical data from any so-
lar panel installation to design a custom site-specific predic-
tion model. We evaluate our model for 118 solar installa-
tions, spread across 16 states in the US, and show that our
grid search technique automatically learns static configura-
tion parameters for each site. Further, unlike prior tech-
niques, our adaptive black box model also accounts for the
dynamic factors, such as snow, dust and pollen, which is ev-
ident from its low prediction error (average MAPE of 27%
for all sites) compared to the average MAPE of around 50%
for a prior machine learning based prediction model. We also
present an application case study to show how a smart home
can exploit SolarCast’s services to schedule elastic loads and
reduce electricity bills. As an example, we show that by sim-
ply providing a little flexibility for a dryer’s start time, the
homeowner can reduce grid energy demand by up to 40%.
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